Последняя активность 1761157714

Версия 60297e1810b45a5eabb6c9c2f00f94c7dfca8f83

gistfile1.txt Исходник
1(segmentation) PS H:\workspaces\segmentation_api> python main.py --image tests/images/cat_3.jpg
2preprocessor_config.json: 100%|███████████████████████████████████████████████████████████████| 406/406 [00:00<?, ?B/s]
3C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\huggingface_hub\file_download.py:143: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\junyu\.cache\huggingface\hub\models--google--deeplabv3_mobilenet_v2_1.0_513. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.
4To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
5 warnings.warn(message)
6Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
7config.json: 1.38kB [00:00, ?B/s]
8pytorch_model.bin: 100%|██████████████████████████████████████████████████████████| 10.4M/10.4M [00:00<00:00, 15.8MB/s]
92025-10-22 14:25:33,617 - models.huggingface_sementic_segmentation_model - INFO - Loading google/deeplabv3_mobilenet_v2_1.0_513 ...
102025-10-22 14:25:33,810 - models.huggingface_sementic_segmentation_model - INFO - google/deeplabv3_mobilenet_v2_1.0_513 model loaded successfully!
112025-10-22 14:25:33,810 - __main__ - INFO - Processing tests/images/cat_3.jpg
122025-10-22 14:25:33,810 - utils.utils - INFO - Loading image from tests/images/cat_3.jpg
132025-10-22 14:25:33,975 - inference.segmenter - ERROR - Segmentation failed for tests/images/cat_3.jpg: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
14Traceback (most recent call last):
15 File "H:\workspaces\segmentation_api\main.py", line 58, in <module>
16 main()
17 File "H:\workspaces\segmentation_api\main.py", line 52, in main
18 results = segmenter.segment(args.image, target_class_ids=args.target_ids, threshold=args.threshold)
19 File "H:\workspaces\segmentation_api\inference\segmenter.py", line 50, in segment
20 results = self.model.predict(image, target_class_ids, threshold)
21 File "H:\workspaces\segmentation_api\models\huggingface_sementic_segmentation_model.py", line 61, in predict
22 outputs = self.model(**inputs)
23 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
24 return self._call_impl(*args, **kwargs)
25 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
26 return forward_call(*args, **kwargs)
27 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 746, in forward
28 outputs = self.mobilenet_v2(
29 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
30 return self._call_impl(*args, **kwargs)
31 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
32 return forward_call(*args, **kwargs)
33 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 527, in forward
34 hidden_states = self.conv_stem(pixel_values)
35 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
36 return self._call_impl(*args, **kwargs)
37 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
38 return forward_call(*args, **kwargs)
39 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 415, in forward
40 features = self.first_conv(features)
41 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
42 return self._call_impl(*args, **kwargs)
43 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
44 return forward_call(*args, **kwargs)
45 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 321, in forward
46 features = self.convolution(features)
47 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl
48 return self._call_impl(*args, **kwargs)
49 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl
50 return forward_call(*args, **kwargs)
51 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\conv.py", line 548, in forward
52 return self._conv_forward(input, self.weight, self.bias)
53 File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\conv.py", line 543, in _conv_forward
54 return F.conv2d(
55RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor
56model.safetensors: 100%|██████████████████████████████████████████████████████████| 10.3M/10.3M [00:00<00:00, 36.9MB/s]