(segmentation) PS H:\workspaces\segmentation_api> python main.py --image tests/images/cat_3.jpg preprocessor_config.json: 100%|███████████████████████████████████████████████████████████████| 406/406 [00:00 main() File "H:\workspaces\segmentation_api\main.py", line 52, in main results = segmenter.segment(args.image, target_class_ids=args.target_ids, threshold=args.threshold) File "H:\workspaces\segmentation_api\inference\segmenter.py", line 50, in segment results = self.model.predict(image, target_class_ids, threshold) File "H:\workspaces\segmentation_api\models\huggingface_sementic_segmentation_model.py", line 61, in predict outputs = self.model(**inputs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 746, in forward outputs = self.mobilenet_v2( File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 527, in forward hidden_states = self.conv_stem(pixel_values) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 415, in forward features = self.first_conv(features) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\transformers\models\mobilenet_v2\modeling_mobilenet_v2.py", line 321, in forward features = self.convolution(features) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1775, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\module.py", line 1786, in _call_impl return forward_call(*args, **kwargs) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\conv.py", line 548, in forward return self._conv_forward(input, self.weight, self.bias) File "C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\torch\nn\modules\conv.py", line 543, in _conv_forward return F.conv2d( RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor model.safetensors: 100%|██████████████████████████████████████████████████████████| 10.3M/10.3M [00:00<00:00, 36.9MB/s]