frank921 / gist:aa182c9887c04b4fb4d408910299c184
0 likes
0 forks
1 files
Last active
| 1 | (segmentation) PS H:\workspaces\segmentation_api> python main.py --image tests/images/cat_3.jpg |
| 2 | preprocessor_config.json: 100%|███████████████████████████████████████████████████████████████| 406/406 [00:00<?, ?B/s] |
| 3 | C:\Users\junyu\anaconda3\envs\segmentation\lib\site-packages\huggingface_hub\file_download.py:143: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\Users\junyu\.cache\huggingface\hub\models--google--deeplabv3_mobilenet_v2_1.0_513. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations. |
| 4 | To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development |
| 5 | warnings.warn(message) |
| 6 | Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.52, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`. |
| 7 | config.json: 1.38kB [00:00, ?B/s] |
| 8 | pytorch_model.bin: 100%|██████████████████████████████████████████████████████████| 10.4M/10.4M [00:00<00:00, 15.8MB/s] |
| 9 | 2025-10-22 14:25:33,617 - models.huggingface_sementic_segmentation_model - INFO - Loading google/deeplabv3_mobilenet_v2_1.0_513 ... |
| 10 | 2025-10-22 14:25:33,810 - models.huggingface_sementic_segmentation_model - INFO - google/deeplabv3_mobilenet_v2_1.0_513 model loaded successfully! |
Newer
Older